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Abstract. A plane rotor, which is an electron constrained to move in a circular orbit, has 
time-dependent magnetic flux on its axis. By Faraday’s law, an induced electric field acts 
on the electron. The induced electric field exerts a torque on the electron and thus changes 
its kinetic angular momentum. The induced electric field also does work on the electron 
and changes its energy. These changes are in agreement with generalised Ehrenfest 
theorems. The kinetic angular momentum and the energy of the electron depend on the 
instantaneous flux through the orbit. The Schrodinger equation for the plane rotor is 
solved exactly in a manifestly gauge-invariant way. The probability that the rotor is in 
an eigenstate of its energy operator is contrasted with the probability that the system is 
in an eigenstate of the unperturbed Hamiltonian. 

1. Introduction 

The Schrodinger equation for a plane rotor, which is an electron constrained to a 
circular orbit, with time-dependent magnetic flux on its axis was recently solved exactly 
in the Coulomb gauge when the initial wavefunction is an energy eigenstate (Kobe 
1982a). In this paper these restrictions are removed. An exact solution to the Schrodin- 
ger equation is given when the vector and scalar potentials are in an arbitrary gauge 
and the initial wavefunction is arbitrary. The manifestly gauge-invariant formulation 
of quantum mechanics (Yang 1976, Kobe and Smirll978) is used to solve the problem, 
and the method of solution is contrasted with a conventional approach. Because the 
problem can be solved exactly, questions of approximations do not become involved 
with questions of principle regarding gauge invariance. 

Since the magnetic flux on the axis of the plane rotor is changing in time, there 
is an induced electric field at the electron by Faraday’s law. This induced electric 
field exerts a torque on the electron, and thus changes its kinetic angular momentum 
(Peshkin et a1 1961, Weisskopf 1961). The induced electric field also does work on 
the electron, and consequently changes its energy. 

The energy operator in this time-dependent problem is not in general the same 
as the Hamiltonian, but is the Hamiltonian without the scalar potential of the time- 
dependent electromagnetic field (Yang 1976, Kobe and Smirl 1978). The energy 
operator, which is time dependent, satisfies an eigenvalue problem, which for the 
plane rotor is solved exactly for arbitrary time dependence of the magnetic flux. The 
eigenstates and eigenvalues of the energy operator in general depend on the time as 
a parameter. The eigenvalues of the energy operator depend on the instantaneous 
flux on the axis of the rotor. When the flux becomes constant the energy eigenvalues 
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738 D H Kobe 

depend on this constant magnetic flux and are the same as in the bound state 
Aharonov-Bohm effect (Peshkin 1981a, b). 

The probability that the plane rotor is in an eigenstate of the energy operator is 
shown to be time independent, no matter how the flux changes in time. Therefore, 
if the plane rotor is in an eigenstate of the energy operator at time zero, the changing 
magnetic flux will not induce transitions from one state to another. The flux does not 
have to be varying adiabatically, as some have suggested (Peshkin et a1 1961). 

The observable operators in this problem satisfy generalised Ehrenfest theorems 
(Yang 1976). An operator corresponding to an observable must be Hermitian and 
have a gauge-invariant expectation value. To be gauge invariant in this sense implies 
that a unitary gauge transformation on the operator must induce a gauge transforma- 
tion on the electromagnetic potentials on which it may depend (Kobe and Yang 1980). 
A new Ehrenfest theorem is given here for the angular displacement operator. The 
time rate of change of the average kinetic angular momentum operator is equal to 
the average of the torque operator. The time rate of change of the average of the 
energy operator is equal to the average of the power operator. 

If the conventional approach to time-dependent problems involving electromag- 
netic potentials is used, the wavefunction is expanded in terms of the eigenstates of 
the unperturbed Hamiltonian (Schiff 1968). The expansion coefficients in this case 
are gauge dependent in general, and not equal to the gauge-invariant probability 
amplitudes (Yang 1982). In the special case that the Coulomb gauge is used, the 
conventional expansion coefficients are equal to the gauge-invariant probability ampli- 
tudes. In this case, the scalar potential also vanishes in the Coulomb gauge and the 
Hamiltonian reduces to the energy operator (Yang 1976). 

In 0 2 the potentials for the electromagnetic field due to the changing magnetic 
flux along the axis of the rotor are obtained, and gauge transformations are discussed. 
The form invariance of the Schrodinger equation under gauge transformations is 
shown in § 3. In § 4 the energy operator is defined and its eigenvalue problem is 
solved. The Schrodinger equation is solved by making an eigenfunction expansion, 
and the probability of finding the electron in an energy eigenstate is obtained. 
Generalised Ehrenfest theorems for angular displacement, kinetic angular momentum 
and energy are given in § 5 .  A conventional approach to time-dependent problems, 
which uses eigenstates of the unperturbed Hamiltonian, is applied in § 6. Finally, the 
conclusions are given in 0 7. 

2. Electromagnetic potentials 

The plane rotor, an electron constrained to move in a circular orbit of radius a,  has 
magnetic flux on its axis. The magnetic induction vector B is zero everywhere except 
on the axis of the rotor where it is infinite in such a way that the magnetic flux @ is 
finite. The vector and scalar potentials for this situation, where the flux @ can vary 
in time, are obtained. The potentials are not unique and gauge transformations can 
be made on the potentials. The problem is most conveniently treated in cylindrical 
coordinates (p, 8, z ) ,  where the z axis is taken to be the axis of the rotor. 

2.1. Vector potential 

The magnetic induction B can be expressed in terms of a vector potential A as 

B = V x A .  (2.1) 
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If (2.1) is integrated over a surface through which the z axis penetrates, we obtain 
the magnetic flux 

by Stokes’ theorem, where the closed curve C =as, the boundary of the surface S, 
passes around the z axis. The magnetic flux @(t)  can depend on the time t because 
B is in general time dependent. 

A vector potential A which gives a B in the z direction, zero everywhere except 
on the z axis, and a finite flux @, is 

A = i@(t)g(e,  t ) 1 2 ~ p ,  (2.3) 

where 8 is a unit vector in the azimuthal direction (Merzbacher 1962). The function 
g(0 ,  t )  is an arbitrary periodic function of 8, except that 

2-  

Jo w g ( e 1 ,  t )  = 2T, (2.4) 

in order for the flux to be given by (2.2). 

2.2. Scalar potential 

Since the flux can change in time, there is an induced electric field E by Faraday’s law 

$c E * d l  = -&/c .  (2.5) 

The integral in (2.5) can be evaluated for a circle of radius p and the induced electric 
field is 

E = - $ & / 2 ~ p c ,  (2.6) 

where & denotes the time derivative of 0. 

potential A and scalar potential q5 by 
Because of Faraday’s law, the electric field can be expressed in terms of the vector 

E = -Vq5 - aA/a (c t ) .  (2.7) 

If we use the vector potential in (2.3), the scalar potential in (2.7) must be 

q5 = ( & , / w [ e  - f @ ,  t ) i - ( @ / 2 ~ c ) f ( 8 ,  t ) ,  (2.8) 

where f denotes the partial time derivative off  and f is defined as 

2.3. Gauge transformations 

The vector and scalar potentials in (2.3) and (2.8) are not unique, however. The same 
magnetic induction field in (2.1) and electric field in (2.7) are obtained if the new 
potentials (Jackson 1975) 

A ’ = A + V A  (2.10) 
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and 

4 1  = Q -aA/a(ct), (2.11) 

are used, where we assume that V x VA = 0 everywhere and that the space and time 
derivatives of A commute. 

In this paper we shall choose the gauge function A to be 

A(@, t )  = [ O ( t ) / 2 ~ ]  le  de’ A (e’, t ) ,  
0 

where A is a function such that 
c 2-  

J de’ A (e ‘ ,  t )  = 0. 
0 

(2.12) 

(2.13) 

Equation (2.13) guarantees that V x VA vanishes everywhere, even on the z axis. The 
value of the curl on the z axis is defined as (Butkov 1968) 

z (V x VA)l,=o = lim(7p ) VA d l  = 0, (2.14) 

where C is a circle of radius p whose axis is the z axis. Equation (2.13) ensures that 
the integral in (2.14) vanishes. 

When (2.12) is used in (2.10) the new vector potential A‘ is (2.3) with g’ = g + A  
replacing g. When (2.12) is used in (2.11) the new scalar potential Q’ is (2.8) with f’ 
replacing f. The function f’ is obtained from (2.9) with g’ = g + A  replacing g. It is 
important to notice that a gauge transformation with g’ = 0 is not allowed by (2.4) 
and (2.13) (Bawin and Burnel 1980, Rowe 1980, Wilczek 1982). Otherwise the 
magnetic field on the axis of the rotor would be reduced to zero by (2.2). 

P + O  -l  fC 

3. Schrodinger equation 

An electron of charge q and mass m is constrained to move in a circular orbit of 
radius a in an electromagnetic field characterised by the vector potential A and scalar 
potential Q, When the electron is minimally coupled to the electromagnetic field, the 
Schrodinger equation for this system is 

[(l /2m)(p8 -qAe/c)* +qQI$ = iha$/at, (3.1) 
where 4 = $(e, t ) .  When the canonical momentum Pe = -ihp-’a/ae, where p = a, is 
used in (3.1) along with (2.3) and (2.8), we obtain 

{(h’/21)[-ia/ae -a ( t )g(e,  t ) I2  + hai ( t ) [e  - f ( e ,  t ) ]  - ha ( t ) f ( e ,  t))4 = iha$/at, (3.2) 
where I = ma2 is the moment of inertia and the dimensionless quantity a ( t )  is defined 
as 

a ( t )  = qO( t ) /2 rhc .  (3.3) 
The Schrodinger equation in (3.1) is form invariant (Yang 1976, Kobe and Smirl 

1978) under the gauge transformations in (2.10) and (2.11) if the wavefunction is also 
transformed, 

4‘ = exp(iqA/hc)J/. (3.4) 
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For the gauge function (2.12), the new Schrodinger equation is the same form as (3.2) 
with 4, g, and f replaced by $’, g’, and f‘, respectively. In the new gauge g’ = g + A  
and f’ is obtained from (2.9) with g replaced by g’. 

A technique for solving (3.2) is to transform to the Coulomb gauge where g’= 1. 
A formal solution can then be obtained. This solution can be transformed back to 
the original gauge in (3.2). Instead of using this method, an expansion in terms of 
energy eigenfunctions will be used. 

4. Energy eigenstates 

In order to find the probability that the plane rotor is in an energy eigenstate, it is 
first necessary to define the energy operator (Yang 1976). The energy operator for 
a problem in a time-dependent electromagnetic field is not in general the Hamiltonian. 
The Hamiltonian has a gauge-dependent expectation value so it is not in general an 
observable. The energy operator, on the other hand, has a gauge-invariant expectation 
value whose time rate of change is equal to the average of the quantum mechanical 
power operator. The energy operator for a plane rotor is obtained in this section and 
its eigenvalue problem is solved. The Schrodinger equation is solved by making an 
eigenfunction expansion. The probability that the rotor is in an energy eigenstate is 
time independent. 

4.1, Energy opera tor 

The energy operator 8 for a plane rotor is 

8 = (t1’/21)[-ia/~ -a( t )g(e ,  t)]’, (4.1) 
which is the Hamiltonian in (3.2) without the scalar potential term qq5 of the external 
time-dependent field in (2.8). The Hamiltonian and the energy operator for this 
time-dependent problem are in general different. 

The eigenvalue problem for the energy operator 8 is 

( h ’ / ~ [ - i a / a e  - (t)g(e, t)1’4, = E,(f)+,, (4.2) 
where 4” =&(e,  t )  and time t is a parameter. The flux in (4.2) can depend on the 
time in an arbitrary way, and there is no restriction that it vary only adiabatically (Klein 
1980). The solution to (4.2) is 

(4.3) 

where n is an integer and 4, is normalised on (0,27r). Equation (4.3) is single valued, 

(4.4) 

since g(0, t )  in (2.3) is single valued, g(0, t )  = g ( 2 ~ ,  t ) .  We have chosen the standard 
representation of the kinetic angular momentum in which the wavefunction is single 
valued, instead of representations with multivalued (or discontinuous) wavefunctions 
(Kretzschmar 1965, Kobe 1982b). The energy eigenvalue in (4.2) is 

(4.5) 

$,(e, t )  = ( 2 ~ ) - ” ’  exdine -ia(t)[e-f(e,  t ) ] } ,  

4” (0, t )  = *“(2T, t ) ,  

E , ( t )  = A2[n -a  (t)]’/21, 

in which the time is a parameter. 
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The energy eigenstate in (4.3) is also an eigenstate of the z component of the 
kinetic angular momentum 

L,  = { r  x ( p  - q A / c ) } ,  = h[-ia/M -a(t)g(8, t)], (4.6) 

since L, and 8 in (4.1) commute. The eigenvalue equation is 

LZJln = h[n -a (?)I$". (4.7) 

The eigenvalue of the kinetic angular momentum is shifted from its value in the 
absence of flux by an amount which is proportional to the instantaneous flux. 

4.2. Solution to the Schrodinger equation 

By expanding the wavefunction $(t)  in terms oi eigenstates of the energy operator 
and substituting it into the Schrodinger equation, we obtain an equation for the 
expansion coefficients which can be solved exactly. By substituting the expression for 
the expansion coefficients into the wavefunction expansion an exact solution to the 
Schrodinger equation is obtained. 

The wavefunction $ is expanded in terms of the eigenstates 4, of the energy 
operator 

(4.8) 

where the expansion coefficients at time t are 

c"(t)=($"(t)l$(t)). (4.9) 

The expansion coefficients in (4.9) are also the probability amplitudes of finding the 
rotor in an energy eigenstate at the time t. Equation (4.9) is gauge invariant because 
under a gauge transformation 4, transforms in the same way as 4 does in (3.4). 

If (4.8) is substituted into the Schrodinger equation in (3.2), we obtain 

(4.10) 

with the help of (4.2). The matrix element on the right-hand side of (4.10) can be 
explicitly evaluated, 

(4" I(44 - iha/at)$m) = 0,  (4.11) 

when (4.3) and (2.8) are used. Equation (4.10) thus becomes 

ihc, - e,(t)c, = 0, (4.12) 

the solution of which is 

c,(t) = exp -(i/h) dt' e,(t') ~" (0 ) .  i I,' ) (4.13) 

The initial wavefunction $(e, 0) must be known to solve the time-dependent Schrodin- 
ger equation in (3.2), so c,(O) in (4.9) at time t = 0 is known. 
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The solution to the Schrodinger equation in (3.2) is then obtained by substituting 
(4.13) and (4.3) into (4.8), which gives explicitly 

+(e, t )  = exp{-ia(t)[f3 -m, t)I) 

(27r-”’ exp(inf3). 
n 

(4.14) 

That (4.14) is a solution to the Schrodinger equation in (3.2) may be checked by direct 
substitution. 

The probability for finding the system in the state n at time t is 

PflO) = lCfl(t)12 =Pfl(O), (4.15) 

by (4.13). If the plane rotor has a probability P,,(O) of being in the state n at time 
zero, it will have the same probability for all time. There are no transitions between 
energy eigenstates no matter how the flux changes in time. Equation (4.15) is gauge 
invariant because (4.13) is gauge invariant. 

5. Ehrenfest theorems 

In this section generalised Ehrenfest theorems (Yang 1976) are used to show the 
relationship between quantum theory and classical theory for the plane rotor. The 
time rate of change of the expectation value of a periodic function of the angular 
displacement, the kinetic angular momentum operator, and the energy operator are 
considered. 

5.1. Angular displacement 

The analogue of the expectation value of linear displacement is the expectation value 
of the angular displacement (J,/f34). The time rate of change of (4164) is not 
(4  I &/I)$) as one might expect, where L,/I can be defined as the angular velocity 
operator. For L ,  to be a self-adjoint operator the wavefunction 4 must be periodic 
with period 2 ~ .  Therefore the function 04 is not in the domain of the operator L, 
(Biedenharn and Louck 1981). 

Instead, we shall consider exp(i@), which is a periodic function of 8, so that if 4 is 
in the domain of L, so is exp(i@)@. It can be shown that 

(5.1) 
This equation is an Ehrenfest theorem corresponding to the classical equation for the 
time derivative of exp(if3). In the classical case L, commutes with exp(if3/2) and we 
obtain the form expected classically. The operator exp(if3) is not Hermitian, so it 
cannot be considered as an observable. To obtain Hermitian operators, the real and 
imaginary parts of (5.1) can be taken. 

d(4 I cos f3$)/dt = 4 4  I [sin(f3/2)(LZ/I) cos(f3/2) +cos(f3/2)(L,/I) sin(f3/2)]4). (5.2) 

In the classical case L, commutes with cos(f3/2) and sin(f3/2), and we obtain 
-sin f3(Lz/I) ,  which is the form expected classically. The imaginary part of (5.1) gives 

(5.3) 

d(4 1 exp(if3)4)/dt = (4 I i exp(if3/2)(L,/I) exp(if3/2)4). 

The real part of (5.1) gives 

d(4 1 sin @4)/dt = (4 I [cos(8/2)(Lz/I) cos(8/2) - sin(@/2)(LZ/I) sin(8/2)]4). 
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In the classical case where L, commutes with cos(O/2) and sin(O/2), we obtain 
cos O(L,/I)  which is the form expected classically. All the operators in (5.2) and (5.3) 
are Hermitian. Therefore (5.2) and (5.3) are Ehrenfest theorems for sinusoidal 
functions of the angular displacement operator. Equation (5.1) is satisfied by the 
wavefunction in (4.8) which can be shown by direct substitution (see appendix, 0 Al) .  

5.2. Kinetic angular momentum 

The z component of the kinetic angular momentum in (4.6) also satisfies a generalised 
Ehrenfest theorem (Yang 1976) 

d(4 lL24)/dt = (4 IT,$). (5.4) 

T ,  =WEe =-hdr(t), (5.5) 

In this case the z component of the torque operator, T = r x qE, is 

by (2.6) and (3.3). Equation (5.5) is independent of the coordinates, and so the torque 
on the electron is the same regardless of the size of the orbit. Equation (5.4) is satisfied 
by the wavefunction in (4.8), which can be shown by direct substitution (see appendix, 
0 A2). 

5.3. Energy 

The energy operator 8 in (4.1) can be written in terms of the z component of the 
kinetic angular momentum L, in (4.6) as 

8 = L2/21, (5.6) 
where I = ma2 is the moment of inertia. Equation (5.6) has the same form as the 
classical energy, and is equal to the Hamiltonian only when the scalar potential of 
the time-dependent electromagnetic field vanishes. The energy operator also satisfies 
a generalised Ehrenfest theorem (Yang 1976) 

(5.7) d(4 I 84) ld t  = (4 lP4). 
The power operator P in this case is 

P = qEeve = r,L,/I, (5.8) 
where V g  = e  * U  is the azimuthal component of the velocity operator U = 
( p  - q A / c ) / m ,  the torque operator r, is given in (5.5) and the kinetic angular momen- 
tum operator L, is given in (4.6). By substituting (4.8) into (5.7) it can be shown to 
be satisfied (see appendix 0 A3). 

6. Conventional procedure for probability amplitudes 

The Schrodinger equation in (3.2) is the equation for a charged particle in a time- 
dependent electromagnetic field. The conventional procedure for solving such prob- 
lems is to expand the quadratic term in the Hamiltonian, and treat all the time 
dependence as a perturbation (Schiff 1968). This procedure destroys the manifest 
gauge invariance of the Schrodinger equation. When the wavefunction is expanded 
in terms of the eigenstates of the unperturbed Hamiltonian Ho, the expansion 
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coefficients are dependent on the choice of the gauge, and cannot be interpreted in 
general as probability amplitudes (Yang 1982). 

6.1. Expansion coefficients 

The quadratic term in the Hamiltonian in (3.2) can be expanded, which gives the 
Schrodinger equation 

{ H ~  + (ih’/I)a ( t ) g ( e ,  t)a/ae + (ih’/21)a ( t ) a g ( e ,  t vae  + (h’/21)[a ( t ) g ( e ,  t)]’ 

+ hk ( t ) [ e  +(e, t ) ]  - ha ( t ) f (e ,  t)}4 = iha$/at. (6.1) 

H~ = -(h2/21)aZ/aeZ, (6.2) 

The unperturbed Hamiltonian HO in (6.1) is 

which is the Hamiltonian of a plane rotor in the absence of flux in a gauge in which 
the potentials are zero. The eigenvalue problem for the unperturbed Hamiltonian is 

-(h2/2~)aZ4,/ae2 = efl4,. (6.3) 
The eigenfunctions 4, in (6.3) are 

4,(e) = ( 2 7 ~ ) - ~ ”  exp(ine), (6.4) 
where n is an integer, which are single valued and normalised on (0 ,2~r ) .  The 
eigenvalue e, in (6.3) is 

which is the energy of the plane rotor in the absence of magnetic flux. 

terms of the eigenfunctions of the unperturbed Hamiltonian 
In the conventional procedure, the wavefunction +(e, t )  in (6.1) is expanded in 

where the expansion coefficients a, are 

= (4flI4(t)). (6.7) 
When (6.6) is substituted into (6.1) and the resulting equation is simplified, the equation 
for the expansion coefficients is 

ihu, - enan = (4, 1 {(ih’/I)a ( t ) g ( e ,  t)a/ae 
k 

+ (ih2/21)(u ( t )ag(e,  t ) / ae  + (h2/21)[(u ( t )g(e ,  t ) l 2  

+hk( t ) [@ -f(e, t ) l -ha (t)f@, t ) k $ k ) a k .  (6.8) 

The solution to this equation depends on the arbitrary function g ,  so it depends on 
the gauge chosen. If (6.8) is solved exactly subject to the initial conditions and 
substituted into (6.6) a correct solution of the Schrodinger equation is obtained. 

The exact solution to (6.8) gives the expansion coefficients in (6.7), where 4 is the 
solution to the Schrodinger equation in (3.2). The expansion coefficient a, depends 
on the gauge because the wavefunction 4 depends on the gauge. Conventionally 
la,(t)1’ is interpreted as the probability for finding the rotor in the state 4,. Since 
la, (t)l’ is gauge dependent, different results for the same physical quantity are obtained 
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in different gauges. The answer to this dilemma is that eigenfunctions of the unpertur- 
bed Hamiltonian do not have any physical significance for the problem because HO 
is not an operator corresponding to an observable. It is only meaningful to obtain 
the probability that the rotor is in an eigenstate of an operator corresponding to an 
observable, like the energy (Kobe and Wen 1980, 1982). The probability amplitude 
that the rotor is in an eigenstate n of the energy operator is given in (4.9). It is not 
equal to  (6.7) except when the latter is in the Coulomb gauge. 

6.2. Coulomb gauge 

In the Coulomb gauge the conventional approach to time-dependent problems 
simplifies, and the expansion coefficients become the gauge-invariant probability 
amplitudes of (4.9). This simplification occurs because the Hamiltonian and the energy 
operator are the same in the Coulomb gauge. The Coulomb gauge condition is 
V A' = 0, where the superscript c indicates the Coulomb gauge. Equation (2.3) shows 
that in the Coulomb gauge g'= 1 and (2.9) shows that f" = 8. The scalar potential in 
(2.8) in the Coulomb gauge is 4'= 0. 

The eigenfunctions $: of the energy operator in the Coulomb gauge are 

*', =+tu (6.9) 

from (4.3) and (6.4). Thus in the Coulomb gauge the conventional expansion coefficient 
in (6.7) becomes 

(6.10) a',(t) = (*;* 1") = cfl(t), 

which is equal to the gauge-invariant probability amplitude in (4.9) for all times. 
Even though the probability amplitudes are the same for the conventional pro- 

cedure in the Coulomb gauge and the gauge-invariant procedure, the unperturbed 
energy in (6.5) does not depend on the flux. The equation of motion for the expansion 
coefficients a',(t) in the Coulomb gauge is obtained from (6.8) by using g'= 1, which 
gives 

ihuz - ens; = C  [ ( ih2 / I ) a  ( t ) (dn I ( a / a 8 ) 4 k )  + (h2/21)a (tI2(d,, /dk)IaCk. (6.11) 

When (6.4) is substituted into (6.11) and the orthonormality of the eigenstates is used, 
we obtain 

ikit - ~ , ( t ) a t  = 0 ,  (6.12) 

where e,(t) is given in (4.5). The energy e ,  in (6.11) becomes 'dressed' by the terms 
in the sum for which k = n  to give ~ , ( t ) .  Equation (6.12) is the same as (4.12), and 
the solution is also (4.13) since a', =c,  by (6.10). In the Coulomb gauge (g '=  l), 
and in this gauge only, the conventional procedure agrees with the gauge-invariant 
procedure. 

k 

7. Conclusion 

The problem of a quantum mechanical plane rotor with time-dependent magnetic 
flux on the axis is solved exactly. The energy eigenvalues, probabilities, and expectation 
values of observables are all manifestly gauge invariant. The time-varying magnetic 
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flux on the axis induces an electric field on the electron by Faraday's law. The induced 
electric field exerts a torque and does work on the electron. Consequently, the kinetic 
angular momentum and energy, respectively, of the electron are changed in agreement 
with generalised Ehrenfest theorems. 

The plane rotor with time-dependent magnetic flux on its axis is an excellent model 
to use to illustrate the manifestly gauge-invariant formulation of quantum mechanics 
(Yang 1976, Kobe and Smirl 1978). The problem is solved exactly, and the results 
of the manifestly gauge-invariant formulation are compared with a conventional 
approach using eigenstates of the unperturbed Hamiltonian. A comparison with the 
adiabatic approximation, which uses eigenstates of the total Hamiltonian, can also be 
made. Only in the Coulomb gauge do the results of the different methods for the 
rotor agree, because in this gauge the Hamiltonian reduces to the energy operator. 
Since the Coulomb gauge is often used in practice, the gauge dependence of the 
conventional approach and the adiabatic approximation has not been fully appreciated 
(Aharonov and Au 1981). 
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Appendix. Verification of Ehrenfest theorems 

The three Ehrenfest theorems in equations (5.1), (5.4), and (5.7) are verified here 
using the wavefunction in (4.8). 

Al.  Angular displacement 

Using equation (4.8) we find that the expectation value of exp(i8) is 

if use is made of the orthonormality of the energy eigenstates in (4.3). The time rate 
of change of (Al )  is 

When (4.13) and (4.5) are substituted into (A2) we obtain 

The right-hand side of (A3) is the same as the right-hand side of (5.1) when (4.7) and 
(4.8) are used in it. Therefore we have verified (5.1) for the wavefunction in (4.8). 
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A2. Kinetic angular momentum 

The expectation value of the z component of the kinetic angular momentum with 
respect to $ ( t )  in (4.8) at time t is 

from (4.7) and (4.13). The time derivative of (A4) gives 

d(4 ILJ/)/dt = -hd(t) ,  (A5) 
which is the same as (5.4) when (5.5) is used. 

A3. Energy 

The expectation value of the energy operator Z$ in (4.1) with respect to 1+4 in (4.8) is 

from (4.2) and (4.13). When the time derivative of (A6) is taken and the energy 
eigenvalues in (4.5) are used, we obtain 

(-47) 

Equations (5.5) and (A4) show that the right-hand side of (A7) is the same as the 
right-hand side of (5.7) with the power operator given by (5 .8 ) .  

d ( W )  I8rLO))ldt = -1 hci(t)[h(n --Q ( t ) ) l I l lcn(0)12 .  
n 
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